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Diffusion with rearranging traps
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A model for diffusion on a cubic lattice with a random distribution of traps is developed. The traps are
redistributed at certain time intervals. Such models are useful for describing systems showing dynamic disor-
der, such as ion-conducting polymers. In the present model the traps are infinite, unlike an earlier version with
finite traps. For the infinite trap version a simple analytical calculation is possible and the results agree
qualitatively with simulations.
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I. INTRODUCTION

Diffusion in a disordered system is a well-studied pro
lem @1,2#. Different approaches have been taken—such
models that consider intersite barriers of varying heights
models that picture sites for diffusing particles as wells w
varying depths, and also combinations of barrier and w
models@3#. Problems where the diffusing particle may e
counter randomly distributed traps have also been stu
@4–6#. However, one class of problem involvesdynamic dis-
order, i.e., wells, barriers, or traps whose distribution
space changes with time. In other words the locations of
traps get redistributed at certain time intervals. Such mod
describe systems like ion-conducting polymers or glas
above the glass transition temperature@7,8#.

Models with dynamic disorder have also been studied
some time. The dynamic bond percolation model~DBPM!
@7,9# of Ratner and co-workers and its many variations stu
one aspect of the problem quite extensively. Effective m
dium approaches have also been used@10,11#.

A different formulation of the dynamic disorder problem
considering a well model rather than a barrier model, w
suggested by Bhattacharyya and Tarafdar@12#. Mandalet al.
@8# applied the model@12# to explain experimental results o
the PEO-NH4ClO4 system@13#. The model@12# considers a
random distribution of two types of site on a square latti
both having finite dwell times, i.e., nonzero jump rates. It
not a ‘‘percolation’’ model in the sense that it never has z
diffusivity. The diffusion coefficient for different ratios o
the two types of site and for different rearrangement tim
was calculated by computer simulation.

In the present work we take the rearranging lattice mo
with finite traps@12# to the limit where one type of site is a
infinite trap. In this limit the diffusion coefficient as a func
tion of the trap concentrationc and rearrangement timet r
are calculated in three dimensions. The results are comp
with the finite trap model as well as the DBPM, and a
supported by computer simulations.

II. THE REARRANGING TRAP MODEL

We consider a cubic lattice with a fractionc of sites oc-
cupied by traps. A particular configuration of traps rema
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constant fromt50 to a timet5t r . After that, the traps ge
rearranged, although the trap concentrationc is constant. If
N0 walkers start a random walk on the lattice from differe
sites att50, during timet r a certain number get trapped
The well-known diffusion law for the mean square distan
covered in timet gives

^r 2&52dD0t. ~1!

The total square distance that would have been traveled
the N0 walkers in the absence of traps is

~r 0
2! tot52dN0D0t r . ~2!

If there are traps this value is reduced to, say, (r tr
2 ) tot , since

some of the walkers get trapped at different times. HereD0
is the diffusion coefficient with no traps, andd is the dimen-
sion of the system.

After the intervalt r , since traps are rearranged, prev
ously trapped walkers may be set free and resume their w
In the next interval fromt5t r to t52t r they again cover a
total distance(r tr

2 ) tot . Figure 1 shows how the square di
tance covered increases with time in our simulation
scribed in Sec. III. So for a time interval much greater th
t r the diffusion coefficient on a rearranging lattice is giv
by

D~c,t r !5~r tr
2 ! tot/2dN0t r . ~3!

FIG. 1. Plot of average squared distance versus timet for c
50.007 andt r52500 from computer simulation. Units are arb
trary.
©2001 The American Physical Society05-1
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This argument is the same as in@9#. The problem is thus
reduced to calculating (r tr

2 ) tot . With traps having infinite
depth~i.e., infinite dwell time!, this is estimated as follows
without involving any complicated mathematics.

A. Calculating the diffusion coefficient D„c,t r…

SupposeN0 particles start a random walk att50 on a
cubic lattice occupied randomly by fractionc of traps. The
remaining (12c) sites are ‘‘allowed’’ sites. If a particle en
counters a trap it gets stuck until the next rearrangem
time; ^r tr

2 & is calculated as the mean distance traveled
each of theN0 particles (r 2

tot)/N0. If there were no traps
(r 0

2) tot would be given by Eq.~2!. This is the total distance
traveled by all the particles in timet r . In the presence o
traps more and more particles get stuck and the total sq
distance traveled does not reach the value in Eq.~1!, but falls
short by an amountDr 2:

Dr 252dN0D0t r2~r tr
2 ! tot . ~4!

Knowing Dr 2 one can calculateD(c,t r) from the relation

D~c,t r !5~r tr ! tot
2 /2dN0t r . ~5!

B. Calculation of Dr 2: the trapping law

To calculateDr 2 we assume a simple law for trappin
We assume that the number of particlesdN trapped in the
time interval t to t1dt is proportional toN, the number of
particles at timet, c, the trap concentration, anddt. So

dN52acNdt. ~6!

a;dS(t)/dt, whereS(t) is the number of distinct sites vis
ited in time t @14#. For three or higher dimensions

S~ t !}t

@15#, so a is a constant depending on the dimension of
system but independent oft. We have thus the simple trap
ping rule

N5N0 exp~2act!. ~7!

It may be mentioned here that the problem of absorpt
by traps is well studied, and exact analytical results h
been worked out for the asymptotic limitt→` @16,17#. In
the asymptotic limit the number of surviving particles at tim
t is given by

N~ t→`!→ N0 exp~2ac2/(d12)td/(d12)!, ~8!

where the exponents ofc and t as well asa are dimension
dependent. However, this result is valid only when the pr
ability of survival becomes very small;10213 @18#. In the
regime we are interested in the simple expression Eq.~7!
agrees much better with simulation results than Eq.~8! as we
show in Fig. 2 for trapping in three dimensions. We m
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now proceed to calculateD. The particles trapped at timet to
t5t1dt contribute an amountdr 2 less to (r tr

2 ) tot than they
would if not trapped:

dr 252dD0~t r2t !. ~9!

Henceforth we consider the cased53 only.
Integrating Eq.~9! over the intervalt r for all particles

trapped during this time, we have

Dr 25E
t50

tr
dr 2dN56E

0

tr
acN0 exp~2act!dt~t r2t !D0

~10!

or

Dr 256D0N0@t r1exp~2act r !/ac21/ac#. ~11!

Since

~r tr
2 ! tot56N0D0t r2Dr 2, ~12!

the diffusion coefficient in the presence of traps with a re
rangement timet r is

D5~D0 /act r !~12e2actr !~12c!. ~13!

The factor (12c) accounts for the particles that are trapp
at the outset, i.e., att50.

We have assumed in Eq.~9! that each particle contribute
^r 2&tr

t/t r to the total squared distance in timet. Here^r 2&tr

is the square distance covered in timet r . We have not con-
sidered the joint probability of a particle covering distancer
in time t and getting trapped betweent and t1dt. This as-
sumption makes the calculation very simple and the res
obtained reproduce the simulation qualitatively. Instead
taking the differenceDr 2 in Eq. ~4!, the same result can b
obtained by calculating directly the mean square dista
traveled by the trapped walkers. In that case the contribu
due to the walkers that have not been trapped at all durint r
has to be added separately. Equation~13! shows thatD/(1
2c) plotted against the scaling variablect r should give a
single curve for differentc andt r .

FIG. 2. Plot of fraction of walkers surviving versus time ste
from simulation, Eq.~7! and Eq.~8! for c50.001 andc50.01.
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C. The limiting cases

For t r→0, that is, for very rapid rearrangement,

D/D0512c ~14!

as expected. Fort r→`, that is, when the system is effec
tively quenched, with no rearrangement

D/D051 ~15!

for c50 and

D/D050 ~16!

for c.0. A nonzero trap concentration, however small, giv
D50 in the limit t r→`. Figure 3 showsD vs c for different
t r . The value ofa is taken asa50.68, as given by our
simulation results for the survival of random walkers in
three-dimensional lattice with traps.

III. SIMULATING DIFFUSION IN THE REARRANGING
TRAP MODEL

We have simulated the random walk on a thre
dimensional rearranging lattice, and calculated the diffus
coefficient for differentc andt r . The algorithm is somewha
similar to the finite trap model in@12#.

We work on an effectively infinite lattice, thus avoidin
finite size effects. A random walker starts to walk on a cu
lattice of unit spacing with a concentrationc of traps. The
location of the traps is not preassigned; the walker dec
whether the current site is a trap from a random number a
goes along. However, once assigned, the trap location
mains fixed for timet r until the next rearrangement. Eac
trap is of infinite depth, so the walker encountering a trap
to remain there until the next rearrangement. To incorpo
this in the algorithm, as soon as the walker falls into a tr
we freeze that walker up to the next rearrangement. To
sure that a site once assigned as allowed is not seen as
on a subsequent visit, we maintain a list of all allowed si
visited duringt r , so that if these are revisited they are s
assigned as allowed.

We average over 105 walks to get̂ r 2& for different time
intervals t@t r . ^r 2& vs t is shown in Fig. 1; the curve is

FIG. 3. Plot of calculated diffusion coefficient versus trap co
centration for renewal times 1, 10, 50, and 250 in arbitrary unit
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exactly like the results shown in@9#. D(c,t r) calculated
from the average slope of^r 2& vs t is plotted againstt r for
differentc and shown in Fig. 4. According to Eq.~13! simu-
lated results for differentc and t r when scaled as
D(c,t r)/(12c) and plotted againstct r should collapse to a
single curve. We find that results fort r5250 and 2000 do
almost coincide and compare favorably with Eq.~13!, as
shown in Fig. 5.

IV. DISCUSSION

Figure 5 shows that the calculated results do not ag
exactly with the value obtained from our simulations. T
reason is probably that our simplified calculation ignores
distribution of distances traveled by different walkers a
assumes an equal average distance covered by all the w
ers. However, the agreement is quite satisfactory in spite
this.

The present model, although closely related to the DBP
@9# and the finite trap model@12#, shows features distinc
from either of them. We discuss here the points of similar
and dissimilarity between the models.

Physically the difference between the finite trap mod
@12# and the present one is only that here the traps are
nite. At this limit, however, a qualitative difference enter
the appearance of the percolation threshold. Now, in
quenched limitt r→`, when the trap positions are froze

- FIG. 4. Plot of diffusion coefficient versus renewal time forc
50.001,0.005,0.01, and 0.05 from simulation, in arbitrary units

FIG. 5. Comparison ofD/(12c) versusct r from simulation
and theory@Eq. ~13!# for renewal times 250 and 2000.
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the diffusion coefficient is zero for nonzeroc, so the thresh-
old is atc50. The position of the threshold is atc50 what-
ever the dimension of the system. So the difference from
model@12# is that there is a threshold. On the other hand,
DBPM does have a percolation thresholdpc at the appropri-
ate bond percolation threshold for the dimension of the s
tem.

Our simulation results shown in Fig. 1 resemble t
DBPM results forp,pc . So the trapping effect is stronge
here than in the DBPM. This is expected since, with sites
infinite traps, a random walker must fall in a trap given s
ficient time, even if the trap concentration is very small.
the bond model ‘‘forbidden’’ sites are inaccessible for t
walker and may be avoided forc,pc .

The finite trap model was shown to account successf
for the dynamic disorder in the polymer electroly
PEO-NH4ClO4 @8#. There the crystalline regions in the poly
mer are assumed to be the sites with longer dwell time,
the amorphous regions the highly conducting sites w
on

E

ta

att
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smaller dwell time. The infinite trap model is suited for sy
tems with stronger trapping, and also systems where reac
species are diffusing in a viscous medium, for example, f
mation of excimers in fluorescence experiments, where fl
rescing monomers combine with each other to form an ‘‘e
cited dimer’’ or excimer@19#. The excimer has a certai
lifetime after which it may dissociate, i.e., the walker is r
leased from the trap. However, in this casedN}c2 rather
thanc as in Eq.~6! if c is the monomer concentration.

The primary interest of this model is that it is possible
calculate the dynamic disorder effect in a very simple w
compared to the DBPM, which requires very involved ma
ematics, and the results are qualitatively very similar.
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