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Diffusion with rearranging traps
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A model for diffusion on a cubic lattice with a random distribution of traps is developed. The traps are
redistributed at certain time intervals. Such models are useful for describing systems showing dynamic disor-
der, such as ion-conducting polymers. In the present model the traps are infinite, unlike an earlier version with
finite traps. For the infinite trap version a simple analytical calculation is possible and the results agree
qualitatively with simulations.
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[. INTRODUCTION constant fromt=0 to a timet= 7, . After that, the traps get
rearranged, although the trap concentratios constant. If
Diffusion in a disordered system is a well-studied prob-N, walkers start a random walk on the lattice from different
lem [1,2]. Different approaches have been taken—such asites att=0, during timer, a certain number get trapped.
models that consider intersite barriers of varying heights, orhe well-known diffusion law for the mean square distance
models that picture sites for diffusing particles as wells withcovered in timet gives
varying depths, and also combinations of barrier and well
models[3]. Problems where the diffusing particle may en- (r?y=2dDqt. (1)
counter randomly distributed traps have also been studied
[4—6]. However, one class of problem involvégnamic dis- The total square distance that would have been traveled by
order, i.e., wells, barriers, or traps whose distribution inthe N, walkers in the absence of traps is
space changes with time. In other words the locations of the

traps get redistributed at certain time intervals. Such models (r§)tor=2dNoDor; . ()
describe systems like ion-conducting polymers or glasses . . .
above the glass transition temperat[ifes]. If there are traps this value is reduced to, safn)(ot, since

Models with dynamic disorder have also been studied fosome of the walkers get trapped at different times. Hzge
some time. The dynamic bond percolation mo@@BPM) is the diffusion coefficient with no traps, ands the dimen-
[7,9] of Ratner and co-workers and its many variations studysion of the system.
one aspect of the problem quite extensively. Effective me- After the intervalr,, since traps are rearranged, previ-
dium approaches have also been usH11]. ously trapped walkers may be set free and resume their walk.

A different formulation of the dynamic disorder problem, In the next interval front= 7, to t=2r, they again cover a
considering a well model rather than a barrier model, wagotal distancet(tzr)mt. Figure 1 shows how the square dis-
suggested by Bhattacharyya and Tarafd®]. Mandalet al.  tance covered increases with time in our simulation de-
[8] applied the moddl12] to explain experimental results on scribed in Sec. Ill. So for a time interval much greater than
the PEO-NHCIO, system[13]. The model[12] considers a 7, the diffusion coefficient on a rearranging lattice is given
random distribution of two types of site on a square lattice by
both having finite dwell times, i.e., nonzero jump rates. It is
not a “percolation” model in the sense that it never has zero D(c,7)= (rtzr)totIZd No7; - 3
diffusivity. The diffusion coefficient for different ratios of
the two types of site and for different rearrangement times 3000 T T T
was calculated by computer simulation. ¢=0.007 —

In the present work we take the rearranging lattice model
with finite traps[12] to the limit where one type of site is an
infinite trap. In this limit the diffusion coefficient as a func-
tion of the trap concentration and rearrangement time
are calculated in three dimensions. The results are compared
with the finite trap model as well as the DBPM, and are
supported by computer simulations.
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Il. THE REARRANGING TRAP MODEL

. . . . . . 0 L L .
We consider a cubic lattice with a fractianof sites oc- 0 4000 . 8000 12000

cupied by traps. A particular configuration of traps remains time

FIG. 1. Plot of average squared distance versus tirf@ c
=0.007 andr,=2500 from computer simulation. Units are arbi-
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This argument is the same as [i8]. The problem is thus 1 T
reduced to calculatingrf),;. With traps having infinite E ) s1mu1at a.(7) %lﬁc—gg‘él -
depth(i.e., infinite dwell time, this is estimated as follows, E 0.8 k l(%i with o = 001 _'_j__'_:
without involving any complicated mathematics. g S]Im]latl(%li withe=0.01 +
é’ 0.6 F -
A. Calculating the diffusion coefficientD(c,7,) 7§ !
SupposeN, particles start a random walk &0 on a g o4 % ‘
cubic lattice occupied randomly by fractianof traps. The § 02 i
remaining (1-c) sites are “allowed” sites. If a particle en- & i
counters a trap it gets stuck until the next rearrangement LW : ik
time; (r2) is calculated as the mean distance traveled by 0 2000 000 St338000 8000 10000

each of theN, particles ¢?,;)/Ny. If there were no traps
(r3)ior would be given by Eq(2). This is the total distance FIG. 2. Plot of fraction of walkers surviving versus time steps
traveled by all the particles in time,. In the presence of from simulation, Eq(7) and Eq.(8) for c=0.001 andc=0.01.
traps more and more particles get stuck and the total square
distance traveled does not reach the value in(Eg.but falls  now proceed to calculat@. The particles trapped at timeo
short by an amounAr?: t=t+dt contribute an amounsr? less to ¢Z)o than they
would if not trapped:
Ar?=2dNoDo7 — (1ot
6r2=2dDg( 7 —1). (9)
Knowing Ar? one can calculat®(c,r,) from the relation
Henceforth we consider the cade=3 only.
D(c,r,)=(rt,)t20t/2d No7, . (5) Integrating Eq.(9) over the intervalr, for all particles
trapped during this time, we have

B. Calculation of Ar?: the trapping law

2 [T SN~ " _ _
To calculateAr? we assume a simple law for trapping. 27"~ LZO& dN_GL acNo exp(—actdi(7,—t)Do

We assume that the number of particéN trapped in the (10)
time intervalt to t+dt is proportional toN, the number of
particles at timd, c, the trap concentration, ardt. So or

dN=—acNdt (6) Ar?=6DoN[ 7, +exp—acr)/ac—1/ac].  (11)

a~dg(t)/dt, whereS(t) is the number of distinct sites vis- Since
ited in timet [14]. For three or higher dimensions

(rtr)tot 6NoDo7 — Arza (12

S(t)ect
the diffusion coefficient in the presence of traps with a rear-

[15], soa is a constant depending on the dimension of therangement timer, is
system but independent of We have thus the simple trap-
ping rule D=(Dy/acr)(1—e ) (1—c). (13

N=Ng,exp(—act). (7)  The factor (X-c) accounts for the particles that are trapped
at the outset, i.e., a=0.

It may be mentioned here that the problem of absorption We have assumed in E¢P) that each particle contributes
by traps is well studied, and exact analytical results havér?).t/, to the total squared distance in tirheHere(r?) .
been worked out for the asymptotic lintit>e [16,17. In s the square distance covered in time We have not con-
the asymptotic limit the number of surviving particles at time sidered the joint probability of a particle covering distance

tis given by in time t and getting trapped betweerandt+dt. This as-
sumption makes the calculation very simple and the results
N(t—o)— Ngexp—ac?(d+2)d/(d+2)) (8)  obtained reproduce the simulation qualitatively. Instead of

taking the differenceAr? in Eq. (4), the same result can be
where the exponents af andt as well asa are dimension obtained by calculating directly the mean square distance
dependent. However, this result is valid only when the probtraveled by the trapped walkers. In that case the contribution
ability of survival becomes very sma#t 10" 2 [18]. In the  due to the walkers that have not been trapped at all duting
regime we are interested in the simple expression (Bg. has to be added separately. Equati@B) shows thatD/(1
agrees much better with simulation results than(Bpgas we  —c) plotted against the scaling variabte, should give a
show in Fig. 2 for trapping in three dimensions. We maysingle curve for different and 7, .
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FIG. 3. Plot of calculated diffusion coefficient versus trap con- ~ FIG. 4. Plot of diffusion coefficient versus renewal time for
centration for renewal times 1, 10, 50, and 250 in arbitrary units. =0.001,0.005,0.01, and 0.05 from simulation, in arbitrary units.

C. The limiting cases exactly like the results shown if9]. D(c,7,) calculated
from the average slope @f2) vst is plotted against, for
differentc and shown in Fig. 4. According to E¢L3) simu-
D/Dy=1-¢ (14) lated results for differentc and 7, when scaled as
D(c,7)/(1—c) and plotted againstr, should collapse to a
as expected. For,— o, that is, when the system is effec- single curve. We find that results feyf=250 and 2000 do
tively quenched, with no rearrangement almost coincide and compare favorably with Ed3), as
shown in Fig. 5.

For 7,—0, that is, for very rapid rearrangement,

D/Dy=1 (19

forc=0 and IV. DISCUSSION

Figure 5 shows that the calculated results do not agree
exactly with the value obtained from our simulations. The
Jeason is probably that our simplified calculation ignores the
distribution of distances traveled by different walkers and
assumes an equal average distance covered by all the walk-
ers. However, the agreement is quite satisfactory in spite of
this.

The present model, although closely related to the DBPM
[9] and the finite trap mod€l12], shows features distinct

lll. SIMULATING DIFFUSION IN THE REARRANGING from either of them. We discuss here the points of similarity
TRAP MODEL and dissimilarity between the models.

We have simulated the random walk on a three- Physically the difference between the finite trap model
dimensional rearranging lattice, and calculated the diffusioi12] and the present one is only that here the traps are infi-
coefficient for different and 7, . The algorithm is somewhat hite. At this limit, however, a qualitative difference enters,
similar to the finite trap model ifi12]. the appearance of the percolation threshold. Now, in the

We work on an effectively infinite lattice, thus avoiding duenched limitr,—c, when the trap positions are frozen,
finite size effects. A random walker starts to walk on a cubic

D/Dy=0 (16)

for c>0. A nonzero trap concentration, however small, give
D=0 in the limit 7, — . Figure 3 show® vs c for different
7,. The value ofa is taken asa=0.68, as given by our
simulation results for the survival of random walkers in a
three-dimensional lattice with traps.

lattice of unit spacing with a concentratianof traps. The 0.1 T T T T T T T
location of the traps is not preassigned; the walker decides simulation with renewa] Sculated ——
whether the current site is a trap from a random number as it 0.08 > simulation with renewal time=2000 + -+
goes along. However, once assigned, the trap location re-

mains fixed for timer, until the next rearrangement. Each & 0.06 [ .
trap is of infinite depth, so the walker encountering a trap has g

to remain there until the next rearrangement. To incorporate @ .04 -
this in the algorithm, as soon as the walker falls into a trap,

we freeze that walker up to the next rearrangement. To en- 0.02 4
sure that a site once assigned as allowed is not seen as a tra| N

on a subsequent visit, we maintain a list of all allowed sites 0 3 4 . . A
visited duringr,, so that if these are revisited they are still 0 50 100 15Q 200 250 300, 330 400

. trap conc.)(rearrangement time
assigned as allowed. ( ( )

We average over POwalks to get(r?) for different time FIG. 5. Comparison oD/(1—c) versuscr, from simulation
intervalst>r,. (r?) vst is shown in Fig. 1; the curve is and theory[Eq. (13)] for renewal times 250 and 2000.
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the diffusion coefficient is zero for nonzeop so the thresh- smaller dwell time. The infinite trap model is suited for sys-
old is atc=0. The position of the threshold is @=0 what-  tems with stronger trapping, and also systems where reacting
ever the dimension of the system. So the difference from thepecies are diffusing in a viscous medium, for example, for-
model[12] is that there is a threshold. On the other hand, thenation of excimers in fluorescence experiments, where fluo-
DBPM does have a percolation threshpldat the appropri- rescing monomers combine with each other to form an “ex-
ate bond percolation threshold for the dimension of the syseited dimer” or excimer[19]. The excimer has a certain
tem. lifetime after which it may dissociate, i.e., the walker is re-
Our simulation results shown in Fig. 1 resemble theleased from the trap. However, in this casBocc? rather
DBPM results forp<p.. So the trapping effect is stronger thanc as in Eq.(6) if c is the monomer concentration.
here than in the DBPM. This is expected since, with sites as The primary interest of this model is that it is possible to
infinite traps, a random walker must fall in a trap given suf-calculate the dynamic disorder effect in a very simple way
ficient time, even if the trap concentration is very small. Incompared to the DBPM, which requires very involved math-
the bond model “forbidden” sites are inaccessible for theematics, and the results are qualitatively very similar.
walker and may be avoided far<p,.
The finite trap moqlel was s_hown to account successfully ACKNOWLEDGMENTS
for the dynamic disorder in the polymer electrolyte
PEO-NH,CIO, [8]. There the crystalline regions in the poly-  We thank UGC for financial assistance. S.M. and R.D.
mer are assumed to be the sites with longer dwell time, andcknowledge CSIR for financial support. The authors also
the amorphous regions the highly conducting sites withthank Dr. P. Nandy for useful discussions.
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